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EXECUTIVE SUMMARY  

In many of today’s organizations, a disconnect exists between the teams involved in the 

production of data and the teams involved in the interpretation of data. Data analysis is often 

secondary, and the traditional model is costly and time-consuming to maintain. Businesses need 

a newer, more agile approach to keep up with innovation and the growing demand for real-time 

data analytics. This technical white paper proposes an alternative solution that reduces expenses 

and improves flexibility, while still leveraging the technical experts within an organization. The 

idea is to create a paradigm shift that’s pro-education, pro-decentralization, pro-self-service, 

where application development teams become responsible for making their data analyzable from 

the beginning. That data should then be broadcast in such a way where it can be consumed by 

downstream systems.  

 

THE TRADITIONAL APPROACH 

In the typical product life cycle, several independent applications are built over time for any 

given organization. These applications are responsible for housing mission-critical data. Once 

these applications are deployed, a project is started to unite all of this data to gain business 

insights and drive decision-making. Sometimes an expensive data-warehouse and ETL package; 

or data lake solution is purchased and deployed. This can create problems down the line for most 

companies because the attempt to integrate with these systems happens after the large capital 

expenditures. In addition, integration generally consists of pulling all data every day or using 

some large flat-file transport. But what about data latency? Does new data need to be available 

for analysis weekly, daily, or even hourly? Can a tremendous batch job be sustained when 



 

 

 

 

running this frequently? Never mind that 

performant applications today may not be 

performant a month from now. 

 

These traditional systems are expensive to 

build and difficult to maintain. There are 

many upfront costs, and it could take an 

entire team of dataops, data analysts, and 

systems engineers to find data, transform it, 

and put it into a data warehouse or data 

lake. The tools used to accomplish this are 

typically not amenable to test-driven 

development or deployments without 

human interaction. These systems do not 

usually use industry-standard languages and frameworks or Continuous Integration (CI) or 

Continuous Delivery (CD) best practices.  

 

The maintenance and upfront development costs extend beyond the initial purchase of these 

tools as well. For example, part of your license may include a consultant from the vendor who 

comes in to modify the source code of your installation. The problem is that customizing your 

installation makes it difficult to upgrade when a new version is available from the vendor. 

 
CONSTANTLY PLAYING CATCH-UP 

When a source system starts producing an additional piece of data, multiple teams need to get 

involved, using multiple technologies, to get a single piece of data in the warehouse. This is a 

catch-22 in the sense that new analytics requirements slow down the release of application 

features, and changes after the release require the back-population of data that was recorded 

before the change to support analytics. Without a complete audit trail, insights that may have 

been available during the initial release may be lost. On top of this, mergers and acquisitions 

don’t stop due to a data warehouse project, so those new data sources have to be integrated as 

well. 

 



 

 

 

 

As we move toward being more data-driven, our data sources change while we’re trying to 

develop a centralized data insights solution. Organizational and product innovation does not stop 

while we build centralized data insight engines. Not only does the scope and scale of data 

continuously increase with time, but the needs of new performance indicators change at the 

pace of product and service innovations. Batched, centralized ETL data warehouse and data lake 

solutions, no matter the level of investment, cannot keep up with the pace of today’s business 

innovations. This line of thinking is also demonstrated in a recent ThoughtWorks article by 

Zhamak Dehghani: 

 

“The assumption that we need to ingest and store the data in one place to get value from a 

diverse set of sources is going to constrain our ability to respond to proliferation of data 

sources. We have created an architecture and organization structure that does not scale and 

does not deliver the promised value of creating a data-driven organization. In order to 

decentralize the monolithic data platform, we need to reverse how we think about data, it's 

locality and ownership. Instead of flowing the data from domains into a centrally owned data 

lake or platform, domains need to host and serve their domain datasets in an easily 

consumable way.” 

 

THE SOLUTION 

Our solution focuses on flexibility and agility. We assume that tomorrow you’ll be more 

knowledgeable than you are today, and we believe it’s important to focus on avoiding one-size-

fits-all schemas. Rather than analytics and ETL being the sole responsibility of a specific set of 

tools distinct and different from the systems that are producing the data, these become first-

class features of producing systems. Certain major companies like Amazon have already started 

implementing this approach. In an email memo that Jeff Bezos sent to his employees, he 

stressed: 

 

“1) All teams will henceforth expose their data and functionality through service interfaces. 

 

2) Teams must communicate with each other through these interfaces. 

 



 

 

 

 

3) There will be no other form of interprocess communication allowed: no direct linking, no 

direct reads of another team’s data store, no shared-memory model, no back-doors 

whatsoever. The only communication allowed is via service interface calls over the network. 

 

4) It doesn’t matter what technology is used. HTTP, Corba, Pubsub, custom protocols — 

doesn’t matter. 

 

5) All service interfaces, without exception, must be designed from the ground up to be 

externalizable. That is to say, the team must plan and design to be able to expose the 

interface to developers in the outside world. No exceptions.” 

 

As an application that is producing new data 

for an organization (e.g., user facing data 

entry), it is that application’s responsibility to 

make the data that it produces consumable 

to others without having to retrofit the 

application. This goes for systems that exist 

today, as well as future systems that may be 

built. At a high level, this is achieved by 

broadcasting an event to interested 

downstream systems when activities occur, 

and ensuring that all data is available using 

that event even if there is no consumer of 

that data today. This is a scalable solution 

because as systems become more 

connected, the complexity of the source 

system does not increase and consuming 

applications can have full control over what they do with the data they are getting.  

 

THE ROLE OF PRODUCERS AND CONSUMERS 

There are two types of consumers: one is business-driven, the other one is state-driven. 

Business-driven consumers care about the “why” and want all the details (e.g., when, where, and 



 

 

 

 

why a customer signed up). State-driven consumers just need to know when a customer 

changes, but don't necessarily care why. However, both care about the “what.”  

 

What producers typically do: 

● Process transactions 

● Decide what the event should contain (e.g., pointers to source data, or metadata about 

the action or data recorded) 

● Decide whether the event should be a state-change event or a business-level event 

 

What consumers typically do:  

● Window and filter anything that requires action 

● Track key performance indicators (e.g., an aggregate of the total sales per month) 

● Use the correct data structures and algorithms to fit the distributed nature of event-

driven systems and their unique memory and consistency requirements. An example of 

this can be found in Andrii Gakhov’s most recent book, Probabilistic Data Structures and 

Algorithms for Big Data Applications. In it, he writes: 

 

"Probabilistic data structures is a common name for data structures based mostly on 

different hashing techniques. Unlike regular (or deterministic) data structures, they always 

provide approximated answers but with reliable ways to estimate possible errors. 

Fortunately, the potential losses and errors are fully compensated for by extremely low 

memory requirements, constant query time, and scaling, the factors that become essential in 

Big Data applications.” 

 

TYPES OF BROADCASTING 
 

When producers are broadcasting information, they should be doing it in such a way where the 

information can be consumed by any downstream system. The question we need to ask 

ourselves is: What are we producing and consuming? For each logical topic, determine when 

events should be broadcast and what they should contain. Some high-level categories to 

consider are:  

● Broadcast a change notification with the primary key/ID of the record from the source 

system: Don’t put the original nor the changed data in the event. This solves lots of 



 

 

 

 

problems if you can support the load and you’re okay with latency. However, this can 

cause loss of resolution if the data changes fifteen times before the interested 

applications decide to pull the most recent version of the data after receiving the event 

notification. 

 
 

● Change Data Capture (CDC): With this strategy, you can capture changes without 

changing the application and technologies. You don’t even have to impact the 

performance of the application because all you’re doing is tailing the write-ahead log 

(with, as an example, Debezium: https://debezium.io/). The upside to this approach is you 

don’t need to change code for existing systems connected to databases. The downside is 

that you only see events that involve a database change (as opposed to user gets, actions 

that don’t get captured). Also, you’ll see that data changed, but you won’t necessarily see 

why it changed. 

 

 



 

 

 

 

● CQRS/Event Sourcing: Rather than building a system where business processes are saved 

in a database via an update statement, instead, consider using an insert only data 

structure. This way, your entire system is built on events that occur versus an after effect 

of state. Current state is always derivable from the event log. Another upside to using 

this approach is the “why” is captured and the events are all idempotent. A drawback is it 

requires change in mindset over the traditional development mindset. It’s such a 

fundamental change that it’s a rewrite for existing applications, not something you just 

add in or layer on. Another con is this requires high coordination with the business. 

Events should be based on the business process and transitions between nodes/steps in 

a flowchart. This takes a lot of communication. However, it provides a lot of value in 

compliance, regulatory requirements, etc., because all of the regulatory stuff becomes 

free. (If you’d like to know more about this approach, check out Source Allies' Event 

Sourcing blog here: https://www.sourceallies.com/2019/11/event-sourcing/.)  

 

 

 

Keep in mind that when considering each of these strategies, it’s almost always necessary to 

know when an event occurred. This is why we strongly recommend including the event time. 

This way, the downstream systems can decide what to do with necessary information. It’s also 

important to ensure that the transactions are consistent. No matter which broadcast strategy 

you use, an application should not broadcast an event and roll back a transaction, or commit a 

change to the data, without broadcasting an event.  

 

From the consumer side of things, the paradigm shifts from “getting all the data” on a schedule 

or having all the data locally to instead reacting to business activity via the events that producing 



 

 

 

 

systems are broadcasting. For example, rather than holding a copy of every user account or 

running a query against the whole accounting system every night to look for users that have 

signed up within the last day, we could implement something closer to how the business 

describes the requirements. “When a user signs up, we want to track what countries we are 

operating in.” We can listen to the user events from the accounting system and when a sign up 

event occurs, we can increment a counter or store a record as needed. While this may seem 

more complicated than batch jobs at first glance, it is actually much simpler. There is no need to 

manage a scheduler, and we don’t have to worry about a bad record failing the job. We don’t 

need to have conversations around how often to run it, either. We don’t have performance 

concerns when querying an ever-growing source data set. We don’t have to worry about missing 

data because we didn’t include it in our query. We are not highly coupled to the source system’s 

data storage format. We can scale horizontally in reaction to load.  

 

When consuming events from an event-driven system like proposed above, here are some 

characteristics to be aware of:  

● You may get events out of order (especially between producers) 

● You may get an event more than once 

● Must beware of inserts/updates on the producer (i.e., data changing between broadcast 

and consumption) 

 

TIGHTENING FEEDBACK CYCLES 

Given that every system can listen to anything it wants to, every system can serve analytics 

within its domain. If you broadcast new events in reaction to upstream events, not only is that 

useful to others, but each individual application can use and listen to their own event stream. 

This can also reduce the operational load on shared infrastructure. With this approach it is not 

necessary to rely on a data warehouse to add support or aggregate data in order to gain business 

insights; applications can self-serve that information. Furthermore, companies don’t need to 

perform nightly roll ups of transactions internally. Instead, they should consider consuming their 

own events to do summary and roll up operations, as opposed to performing monster queries via 

periodic batch processes. Simply consider the type of statistic that your analysis is being 

reported on and then choose your aggregation strategies and create your consumers 

accordingly.  



 

 

 

 

 
 

 

The real benefit to this proposed solution comes from scaling out the applications interested in 

the source data. Instead of looking at a report as a one-off special snowflake, we can classify it as 

another application. Applications that produce data, broadcast their produced data, and 

applications that need data, consume it. By decentralizing analytics functionality (aggregations, 

roll-ups, machine learning, etc.) and skill sets, any team can self-serve its analytics needs. This 

reduces vendor lock-in because it allows teams to use a variety of technologies at their disposal. 

It also reduces the dependency on shared analytics infrastructure and teams in order to deliver. 

 
CONCLUSION 

In today’s climate, building our applications to broadcast information is a more efficient way to 

move data between applications. It allows interested parties (e.g., other apps or analytics 

solutions) to listen to that broadcast and implement their own features in reaction to those 



 

 

 

 

changes. The idea is to make every team responsible for building competency in analytics 

technologies from the very beginning. It’s still necessary to have people within our organizations 

who specialize in data analytics. However, their main job isn’t to implement all ingestion and 

transform the data (pleasant news for analytics professionals who typically spend a majority of 

their time wrangling data, fixing pipelines, etc); their job is to distribute analytics knowledge and 

facilitate those capabilities within project teams, similar to how DevOps specialists provide 

tooling and practices to their teams in order to be responsible for their own applications. This is a 

transformative approach that allows analytics to scale with your business, saving your company 

time and money, and allowing you to make sound business decisions based on accurate data.  

 

ABOUT SOURCE ALLIES 

Source Allies is a technology services company based in Des Moines, Iowa. Our multi-disciplinary 

teams are comprised of IT professionals whose areas of technical and process specialization 

include software development, cloud infrastructure, user-experience, and information security. 

We have extensive experience building distributed, test-driven, secure analytics solutions, 

whether it’s legacy or greenfield, on-prem, or with any of the three major cloud providers. Our 

company takes an iterative, cross-functional, team-focused approach to all development to 

ensure that we’re building the right thing at the right time to solve the right problem. We work 

closely with our partners to solve mission-critical technical problems and deliver high-quality 

software solutions. 
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